好久不见,今天给各位带来的是发电机异步振荡的现象,文章中也会对发电机同步振荡和异步振荡如何处理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
引起电力系统异步振荡的主要原因是什么?
1、振荡时系统三相是对称的;而短路时系统可能出现三相不对称。
2、与联轴器配合方面:联轴器损坏,联轴器连接不良,联轴器找中心不准,负载机械不平衡,系统共振等。 ?联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。
3、低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。
4、电力系统发生震荡,产生误动原因:当电力系统中发生震荡或异步运行时,个点的电压,电流和功率的幅值和相位都将发生周期性的变化。电压与电流之比所代表的阻抗继电器的测量阻抗也将周期性的变化。
5、当电力系统由于某种原因受到干扰时(如短路、故障切除、电源的投入或切除等),这时并列运行的各同步发电机间电势差相角差将随时间变化,系统中各点电压和各回路电流也随时间变化,这种现象称为振荡。
6、若功角δ经过振荡后能稳定在某一个数值,则表明发电机之间重新恢复了同步运行,系统具有暂态稳定性。如果电力系统受大扰动后功角不断增大,则表明发电机之间已不再同步,系统失去了暂态稳定。
系统同步振荡及异步振荡各有哪些特点?
异步振荡其明显特征是:系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。
异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周期性地变化,发电机与电网失去同步运行的状态。在异步振荡时,发电机一会工作在发电机状态,一会工作在电动机状态。
其特征是系统将不能保持同一个频率,并且所有的电参量和机械量的波动明显地偏离额定值。非同步振荡会对电力系统的安全产生严重的威胁,必须采取调节控制措施。
低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。
引起电力系统异步振荡的主要原因是什么?系统振荡时一般现象是什么?
发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。
(1)当电力系统稳定破坏后,系统内部的发电机组将失去同步,转入异步运行状态,系统将会发生振荡。(2)系统发生振荡时会出现的主要现象:1)发电机和电源联络线上的功率、电流及某些节点上的电压将会产生不同程度的周期性变化。
不衰减和增幅的振荡会破坏电力系统的正常运行,甚至损坏电工设备,导致系统的崩溃。所以通过分析,掌握电力系统的动态特性,采取措施,预防发生振荡,抑制和消除已发生的振荡,是保证电力系统安全运行的重要内容。
振荡时系统任何一点电流与电压之间的相位角都随功角的变化而改变;而短路时,电流与电压之间的角度是基本不变的。 振荡时系统三相是对称的;而短路时系统可能出现三相不对称。
由系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在0.1—2.0 hz之间,通常称之为低频振荡(又称功率振荡,机电振荡)。
电力系统发生振荡时会出现哪些现象?
电力系统震荡表现为周波、电压、电流和有功功率周期性的忽高忽低,上述量的指针式仪表左右摇摆不定,运转的发电机和电动机产生周期性的嗡鸣声,白炽灯忽明忽暗。严重时会造成电网解列。
发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。
变电站内的电流表、电压表和功率表的指针呈周期性摆动,如有联络线,表计的摆动最明显。2.距系统振荡中心越近,电压摆动越大,白帜灯忽明忽暗,非常明显。
振荡中心的电压有大幅度的跌落。不衰减和增幅的振荡会破坏电力系统的正常运行,甚至损坏电工设备,导致系统的崩溃。
发电机出现振荡有哪些现象
现象如下:(1) 定子电流表的指针向两侧剧烈地摆动,定子电流的摆动超过正常值的情况;(2) 发电机和母线上各电压表的指针都发生剧烈地摆动,通常是电压降低,有功功率表的指针在全表盘刻度上摆动。
系统振荡时一般现象有:发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声;连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。
(2)系统发生振荡时会出现的主要现象:1)发电机和电源联络线上的功率、电流及某些节点上的电压将会产生不同程度的周期性变化。
各位小伙伴们,我刚刚为大家分享了有关发电机异步振荡的现象的知识,希望对你们有所帮助。如果您还有其他相关问题需要解决,欢迎随时提出哦!